CLIMATE SMART AGRICULTURE, FOOD SECURITY AND SUSTAINABLE DEVELOPMENT

GLOBAL ISSUES & LOCAL PERSPECTIVES volume One

Edited by

Eteyen Nyong

Ijeoma Vincent-Akpu

Bassey Ekpo

Muhammad Hussaini

Udensi Ekea Udensi

Mansur Bindawa

Society for Agriculture, Environmental Resources & Management (SAEREM)
First published 2025
SAEREM World
Nigeria
C 2025 Eteyen Nyong
Typeset in Times New Roman All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or others means, now, known or hereafter invented including photocopying and recording or in any information storage or retrieved system, without permission in writing from the copyrights owners.

CLIMATE SMART AGRICULT GLOBAL ISSUES & LOCAL PERSP		Y AND SUSTAINABLE DEVELOPMI	ENT
SAEREM BOOK CHAPTERS	First Published 2025	ISBN 978-978-60709-8-8	
Printed at: SAEREM Work	ld		
SAEREM BOOK CHAPTERS	First Published 2025	ISBN 978-978-60709-8-8 @ SAER	EM World

TABLE OF CONTENTS

Preface

Editorial Note

Table of Contents

Acknowledgement

Dedication

Part one: The Concept of Climate Smart Agriculture (CSA)

Chapter One

Climate-Smart Agriculture (CSA) in Nigeria: An Examination of Successful Interventions, Challenges and Future Opportunities

Chapter Two

Climate Smart Cropping Systems: Pathways to Agricultural Resilience and Environmental Sustainability

^{**} Okwor, Uchechi Mercy¹, Ajuonuma, Edima Fidelis², and Oparaojiaku, Joy Obiageri³

^{1,2,3} Department of Agricultural Extension, University of Agriculture and Environmental Sciences, Umuagwo

Macsamuel Sesugh Ugbaa¹² and Christopher Oche Eche¹²

*Department of Environmental Sustainability, Joseph Sarwuan Tarka University Makurdi (formerly known as Federal University of Agriculture Makurdi **Institute of Procurement, Environmental and Social Standards, Joseph Sarwuan Tarka University Makurdi (formerly known as Federal University of Agriculture Makurdi

Chapter Three

Influence of Genotypes, Trash Mulching, and Weed Control Methods on Sugarcane (*Saccharum officinarum* L.) Productivity under a Changing Climate in the Southern Guinea Savanna of Nigeria

¹Bassey, M.S, ²Shittu, E.A* and ³Elemi, E.D

¹National Cereals Research Institute, P.M.B 8, Bida, Nigeria, ORCID: 0000-0002-9345-1112

²Department of Agronomy, Bayero University Kano, P.M.B 3011, Kano State, Nigeria ORCID: 0000-0003-0639-009X

³Department of Crop Science, University of Calabar, Cross River State, Nigeria, ORCID: 0000-0002-8513-7457; seabarahm.agr@buk.edu.ng +2348024695219

Chapter Four

Climate Change and Adaptation Management Practices In Crop And Animal Production.

Idris, Rakiya Kabir and Suleiman, Akilu

Chapter Five

Climate-Smart Agricultural Extension: Strategies for Enhancing Farmers' Adaptation to Climate Change

¹Mbube, Baridanu Hope, ²Ameh, Daniel Anone & ³Kolo, Philip Ndeji
Federal College of Land Resources Technology, Kuru, P.M.B. 3025 Jos Plateau State
Department of Agricultural Extension and Management Technology
Email: hopembube@gmail.com & baridanu.mbube@fecorlart.edu.ng

Chapter Six

Influence of Climate Change and Soil Characteristics on the Performance of Upland Rice Varieties in the Kagoro Area, Kaduna State, Nigeria

Elisha Ikpe¹, Iliya Jonathan Makarau², Patrick Adakole John³

¹Department of Geography, Federal College of Education, Odugbo, Benue State ²Department of Geography and Planning, University of Jos, Plateau State ³Department of Agriculture, Federal College of Education, Odugbo, Benue State <u>elishaikpe@fceodugbo.edu.ng;</u> Mobile: +2348065665954

Part Two: THE CONCEPT OF FOOD SECURITY

Chapter Seven

Climate-Smart Agriculture and Aquatic Toxicology: Balancing Food Security and Ecosystem Health

Victoria Folakemi Akinjogunla^{1*} and Aishat Ayobami Mustapha²

Department of Fisheries and Aquaculture, Bayero University Kano

Department of Soil Science, Bayero University Kano.*vfakinjogunla.fag@buk.edu.ng

Chapter Eight

Empirical Evidence of Covariate Shocks and Lower Scale Agricultural Risk Interlock in Farming Systems Resilience

Sesugh Uker¹, Muhammad B. Bello² and Aminu Suleiman²

Institute of Food Security, Federal University of Agriculture Makurdi-Nigeria¹

Department of Agricultural Economics, Bayero University Kano-Nigeria²

Chapter Nine

Influence of Different Irrigation Regimes and Intervals on Mineral Content and Yield of Cucumber (Cucumis sativus L)

*Department of Agricultural & Bo-environmental Engineering Technology, Federal College of Land Resources Technology, Owerri, Imo State Department of Soil Science & Technology, Federal College of Land Resources Technology, Owerri, Imo State, Nigeria *a Corresponding author email:igbojionudonatus@gmail.com

Chapter Ten

Integrating Agroforestry and Forest Gardens into Urban Greening for Food Security in Nigeria

Dr. Ogunsusi, Kayode

Department Of Forestry, Wildlife And Environmental Management, Olusegun Agagu University Of Science And Technology, Okitipupa, Ondo State, Nigeria

Chapter Eleven

Climate Smart Agriculture, Food Security and Sustainable Development: Homegarden Agroforestry Perspective

*Eric, E.E., ** Ejizu, A.N. and *Akpan, U.F.

Chapter Twelve

Impact of Information Communication Technology(ICT) on Revenue Generation in Jalingo Local Government Area, Taraba State-Nigeria.

John Baling Fom, PhD¹ and Atiman Kasima Wilson, PhD² Department of Political Sciences, University of Jos. Department of General Studies, Federal Polytechnic, Bali

Chapter Thirteen

^{*,}algbojionu, D.O., blgbojionu, J.N.

^{*}Forestry Research Institutes of Nigeria, Ibadan, Swamp Forest Research Station Onne, Rivers State, Nigeria.

^{**}Forestry Research Institutes of Nigeria, Ibadan, Federal College of Forestry, Ishiaghi, Ebonyi State, Nigeria.

^{*}Corresponding author: estydavies@gmail.com

Role of Climate-Smart Agriculture in Addressing Challenges of Food Security and Climate Change in Africa

'KAPSIYA JOEL*, 'PETER ABRAHAM, 'ADAMU WAZIRI, 'DUNUWEL MUSA DANZARIA'

Department of Horticultural Technology, Federal College of Horticulture Dadin-kowa

Gombe State Nigeria, *Corresponding author: jkapsiya.hort@fchdk.edu.ng

Part Three: THE CONCEPT OF SUSTAINABLE DEVELOPMENT

Chapter Fourteen

The Political Economy of Renewable Energy Transitions: Implications for Fisheries

Victoria Folakemi AKINJOGUNLA^{1*} and Charity Ebelechukwu EJIKEME²
¹Department of Fisheries and Aquaculture, Bayero University Kano, Kano State, Nigeria.
²Department of Biology, Federal College of Education (Technical), Akoka, Lagos, Nigeria.
*vfakinjogunla.faq@buk.edu.ng

Chapter Fifteen

Sustainable Agriculture Practices in the Face of Climate Change

Fakuta, B. A, Ediene, V. F and Etta, O. I.

Faculty of Agriculture, University of Calabar, Calabar, Nigeria

Corresponding author: email balthiya1@gmail.com

Chapter Sixteen

Assessing the Challenges of Implementing Climate Change Adaptation Practices in Agricultural Communities of Benue State, Nigeria

Elisha Ikpe¹, Ugbede D. Omede² and Patrick A. John²

Department of Geography, Federal College of Education, Odugbo, Benue State

²Department of Agricultural Science, Federal College of Education, Odugbo, Benue State

Email: elishaikpe@fceodugbo.edu.ng

Chapter Seventeen Climate Smart Agriculture

Muhammad Usman Mairiga

College of Agriculture and Animal Science

Ahmadu Bello University, Mando Kaduna

Chapter Eighteen

Climate Change and Food Production Threats in Nigeria: A Call for Action

Paul Temegbe Owombo

Department of Agricultural Economics and Extension, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State, Nigeria; owombopaul@gmail.com

Chapter Nineteen

Evaluating the Impact of Climate Change on Weed Dynamics, Sugar Quality, and Performance of Sugar cane hybrid clones in a Nigerian Savanna

¹Shittu, E.A*., ²Bassey, M.S., and ¹Buhari, F.Z.

¹Department of Agronomy, Bayero University Kano, P.M.B 3011, Kano State, Nigeria ORCID: 0000-0003-0639-009X

²National Cereals Research Institute, P.M.B 8, Bida, Nigeria ORCID: 0000-0002-9345-1112 *Corresponding Author email: seabarahm.agr@buk.edu.ng

Chapter Twenty

Integrating Crop Farmers Adaptation Stategies Against Climate Change In Ondo State, Nigeria

Emmanuel Olasope Bamigboye and Lateef Ayodeji Ola

Chapter Twenty One

Climate Change Mitigation Strategies Adopted by Palm Wine Tappers in Akwa Ibom State Nigeria

Eteyen Nyong and G. E. Okon

Department of Agricultural Economics, Akwa Ibom State University, Nigeria

eenyong16@gmail.com

Preface

This book adopts an exegetical approach as well as a pedagogic model, making it attractive agriculture and environmental economics teachers, professional practitioners and scholars. It is eschews pedantry and lays bars the issues in such clarity that conduces to learning. The book elaborates on contemporaneous **Climate Smart Agriculture**, **Food Security and Sustainable Development** issues of global significance and at the same time, is mindful of local or national perspectives making it appealing both to international and national interests. The book explores the ways in which climate smart agriculture (CSA) food security, Sustainable Development issues are and should be presented to increase the public's stock of knowledge, increase awareness about burning issues and empower the scholars and public to engage in the participatory dialogue climate smart agriculture, food security, and sustainable development necessary in policy making process that will stimulate increase in food production and environmental sustainability.

Climate Smart Agriculture, Food Security and Sustainable Development: Global Issues & Local Perspectives is organized in three parts. Part One deals with The Concept of Climate Smart Agriculture, Part Two is concerned with The Concept of Food Security And and Part Three deals with the Concept of Sustainable Development Eteyen Nyong; October 2025

Chapter Five

Climate-Smart Agricultural Extension: Strategies for Enhancing Farmers' Adaptation to Climate Change

¹Mbube, Baridanu Hope, ²Ameh, Daniel Anone & ³Kolo, Philip Ndeji Federal College of Land Resources Technology, Kuru, P.M.B. 3025 Jos Plateau State Department of Agricultural Extension and Management Technology Email: hopembube@gmail.com & baridanu.mbube@fecorlart.edu.ng

Chapter Outline

- I. Introduction
- II. Climate Change Impacts on Agriculture and Farmers' Adaptation Needs
 - A. Overview of Climate Change Impacts on Agriculture
 - B. Farmers' Adaptation Needs and Challenges
 - C. Importance of Agricultural Extension in Supporting Farmers' Adaptation
- III. Principles of Climate-Smart Agricultural Extension
 - A. Farmer-Centered Approach
 - B. Participatory and Inclusive Methods in Climate-Smart Extension
 - C. Use of Climate Information and Early Warning Systems
 - D. Focus on Sustainable Agriculture Practices
- IV. Effective Delivery Mechanisms for Climate-Smart Agricultural Extension
 - A. Digital Extension Services
 - B. Farmer Field Schools and Demonstration Plots
 - C. Public-Private Partnerships and Collaboration with Local Organizations
 - D. Training and Capacity Building for Extension Agents
- V. Case Studies and Examples
- VI. Conclusion

I. Introduction

Climate-smart agriculture (CSA) is a key strategy for tackling climate change challenges in agriculture. Defined as "an approach that aims to sustainably increase agricultural productivity and incomes, enhance and protect ecosystems, and build farmers' resilience to climate change" (Ogisi & Begho, 2023), CSA seeks to integrate climate change adaptation and mitigation strategies into agricultural development. Its importance lies in improving food security, supporting rural livelihoods, and promoting sustainable farming amid changing climate conditions (Bhatnagar, et al., 2024). Agricultural extension plays a vital role in promoting CSA by providing farmers with the knowledge, skills, and technologies needed to adapt to climate change (Jha & Singh, 2021). Extension services can facilitate the dissemination of climate information, promote climate-resilient agricultural practices, and support farmers in developing

adaptation strategies (Krishna Priya et al., 2025). Effective agricultural extension can enhance farmers' capacity to manage climate-related risks, improve their resilience, and contribute to sustainable agricultural development. This chapter focuses on strategies for enhancing farmers' adaptation to climate change through climate-smart agricultural extension. It explores the role of agricultural extension in promoting CSA, discusses key principles and strategies for effective extension, and examines case studies and examples of successful CSA extension programmes. The chapter aims to provide insights and recommendations for policymakers, extension professionals, and farmers on how to develop and implement effective CSA extension strategies that support farmers' adaptation to climate change.

II. Climate Change Impacts on Agriculture and Farmers' Adaptation Needs

Climate change is significantly impacting agriculture globally, threatening food security, and altering the livelihoods of millions of farmers. Rising temperatures, changing precipitation patterns, and increased frequency of extreme weather events are some of the key climate-related stressors affecting agricultural productivity and sustainability (Mirzabaev et al., 2022; Omokaro, 2024). These impacts vary by region, crop, and farming system, but overall, they pose significant challenges to farmers' ability to maintain productive and resilient agricultural systems.

A. Overview of Climate Change Impacts on Agriculture

Climate change impacts on agriculture are multifaceted, including:

1. Changing weather patterns

Changing weather patterns due to climate change have far-reaching consequences for agriculture. shifts in temperature and precipitation patterns alter the delicate balance of growing conditions (Nega, 2024), affecting:

- i. Growing seasons: Warmer temperatures can cause plants to mature more quickly, potentially leading to reduced yields and lower quality crops (Cho, 2022).
- ii. Crop yields: Changes in temperature and precipitation patterns can lead to reduced crop yields, decreased crop quality, and increased crop failures (United States Environmental Protection Agency [USEPA], 2025).
- iii. Distribution of plants and animals: Changes in temperature and precipitation patterns can alter the geographic distribution of plants and animals, potentially leading to the loss of biodiversity and ecosystem disruption (Weiskopf et al., 2020).
- 2. Increased frequency of extreme weather events

More frequent and intense heatwaves, droughts, and floods damage crops, livestock, and infrastructure, leading to significant economic losses (Nega, 2025). These events can impact crops in various ways:

- i. Heatwaves can cause crop wilting, reduced yields, and lower quality crops. For example, wheat yield losses can be up to 6% for each degree Celsius increase in temperature.
- ii. Droughts lead to water shortages, affecting irrigation systems and stunting plant growth, while also resulting in soil degradation and erosion.
- iii. Floods cause soil erosion, crop damage, and loss of nutrients, making it essential for farmers to develop more resilient crop varieties.
 - (Kumar, 2022; Mishra, 2023; Alotaibi, 2023; Kim & Lee; 2023; Brandon, 2024)

Livestock are also vulnerable to extreme weather events. According to Godde et al. (2021),

- Rising temperatures can cause heat stress, leading to decreased productivity and increased diseases.
- Droughts disrupt feed availability and water sources, further threatening livestock health.
- Warmer temperatures can also affect the spread of diseases and pests that impact livestock.

The economic impacts of extreme weather events on agriculture can be substantial. Alotaibi (2023) highlighted:

- Temperature increases could decrease wheat yield by 41-52% and rice yield by 32-40%.
- Extreme weather events can damage infrastructure, such as greenhouses and irrigation systems, leading to significant economic losses.
- Extreme weather events can reduce crop yields, decrease livestock productivity, and increase costs for farmers

3. Water Scarcity

Changes in precipitation patterns and increased evaporation due to warmer temperatures are exacerbating water scarcity, posing significant challenges to agricultural productivity and food security (Adamaagashi, et al., 2023). Water scarcity can have far-reaching impacts on crop growth, livestock productivity, and the overall sustainability of agricultural systems.

Water scarcity can affect crop growth in several ways:

- i. Reduced Water Availability: Changes in precipitation patterns and increased evaporation can reduce the amount of water available for irrigation, leading to water stress and reduced crop yields.
- ii. Crop Failure: Prolonged droughts can cause crop failure, leading to significant economic losses for farmers.
- Soil Degradation: Water scarcity can lead to soil degradation, reducing soil fertility and affecting its ability to support plant growth.
 (Ingrao, Strippoli, Lagioia, & Huisingh, 2023).

CLIMATE SMART AGRICULTURE, FOOD SECURITY AND SUSTAINABLE DEVELOPMENT

GLOBAL ISSUES & LOCAL PERSPECTIVES volume One

Water scarcity can also impact livestock productivity (Bolan, 2024):

- Reduced Water Quality: Changes in precipitation patterns and increased evaporation can lead to reduced water quality, affecting the health and productivity of livestock.
- ii. Water Shortages: Droughts can lead to water shortages, affecting the availability of water for livestock and potentially leading to dehydration and reduced productivity.
- iii. Feed Scarcity: Water scarcity can also lead to feed scarcity, affecting the nutritional intake of livestock and potentially leading to reduced productivity.

The economic impacts of water scarcity on agriculture can be substantial:

- i. Reduced Crop Yields: Water scarcity can lead to reduced crop yields, affecting food security and the livelihoods of farmers.
- ii. Increased Costs: Farmers may need to invest in irrigation systems or other water-saving technologies, increasing costs and potentially affecting profitability.
- Loss of Livestock Productivity: Water scarcity can lead to reduced livestock productivity, affecting the income of farmers and the overall sustainability of agricultural systems.
 (Omokaro, 2024; Tahasin, Haydar, Hossen, & Sadia, 2024).
- B. Farmers' Adaptation Needs and Challenges

Farmers in Nigeria face significant challenges in adapting to climate change, which affects their agricultural productivity and livelihoods. Some of the key adaptation needs and challenges include:

- Access to Climate Information: Limited access to accurate and reliable climate information makes
 it difficult for farmers to make informed decisions about planting, harvesting, and crop
 management. The accessibility and timely availability of climate information could assist farmers
 in making strategic decisions for sustaining and increasing agricultural productivity.
- ii. Climate-Resilient Crop and Animal Varieties: Farmers require access to crop and animal varieties that are resilient to changing climate conditions, but often lack access to these improved varieties. Farmers may lack information about, or access to, climate-resilient seeds, seedlings, or livestock breeds, which can limit their ability to adapt to climate change and ensure sustainable agricultural productivity.
- iii. Improved Irrigation Systems: Farmers need access to improved irrigation systems to manage water scarcity and optimize water use, but poor infrastructure can limit their ability to do so. To effectively manage water resources, farmers need access to technologies like drip or micro-irrigation, which are highly efficient, especially in areas with water scarcity. Additionally, proper maintenance of irrigation equipment, including checking valves and using appropriate nozzles, is essential for maximizing efficiency
- iv. Soil Conservation and Management: Farmers require training and resources to implement soil conservation and management practices that reduce soil degradation and improve soil fertility, but often lack the necessary support. This can lead to reduced crop yields, increased reliance on external inputs, and long-term environmental damage.

- v. Financial Support and Insurance: Farmers need access to financial support and insurance programs to manage risks associated with climate-related crop failures and livestock losses, but limited financial resources can make this difficult.
- vi. Capacity Building and Training: Farmers require training and capacity-building programmes to develop the skills and knowledge needed to adapt to climate change, but often lack access to these programmes.
- vii. *Institutional and policy constraints:* Existing policies and institutions may not support climate change adaptation, and farmers may lack access to extension services, credit, and other resources.
 - (Ncoyini, et al., 2022; Berhanu, 2024; Verdesian Life Sciences, 2024; EOS Data Analytics (EOSDA), 2025; Yeleliere, et al., 2023; Antwi-Agyei & Stringer, 2020)

Addressing these key adaptation needs and challenges will enable farmers in Nigeria to enhance their climate resilience, ensuring sustainable agriculture and food security.

C. Importance of Agricultural Extension in Supporting Farmers' Adaptation

Agricultural extension plays a critical role in supporting farmers' adaptation to climate change. Extension services can provide farmers with:

1. Climate information and advisory services:

Extension agents play a vital role in providing farmers with accurate and timely climate information, enabling them to make informed decisions about planting, harvesting, and crop management (Antwi-Agyei & Stringer, 2020). This can include:

- Weather forecasts: Both short-term and long-term, help farmers plan activities like planting, irrigation, and harvesting. Climate advisories inform them of expected conditions, such as droughts or floods, enabling proactive measures to reduce potential impacts.
- ii. *Crop management advice:* Extension agents can offer advice on crop management practices, such as soil conservation, irrigation management, and pest control, tailored to the climate conditions.
- iii. Decision-support tools: Extension agents can use decision-support tools, such as climate models and agricultural simulation models, to provide farmers with personalized recommendations on crop management and climate risk management (Mabhaudhi, et al., 2024; Paparrizos, 2023).

Climate information and advisory services provided by extension agents are instrumental in enhancing farmers' capacity to adapt to climate change. By utilising these services, farmers can make informed decisions on planting, harvesting, and crop management, effectively anticipate and mitigate climate-related risks, and adopt resilient practices that promote sustainable agricultural productivity (Madhuri, 2023).

2. Technical assistance and training

Extension agents can provide farmers with critical technical assistance and training on climate-resilient agricultural practices and technologies, enabling them to:

- Adopt innovative farming methods and tools that enhance climate resilience
- Improve crop and animal management practices to reduce vulnerability to climate-related
- Utilize climate-smart technologies, such as precision agriculture and irrigation management systems
- Develop skills and knowledge to adapt to changing climate conditions and mitigate potential losses By providing technical assistance and training, extension agents can empower farmers to build their capacity and confidence in managing climate-related risks and improving their agricultural productivity (Alam, 2024).

3. Access to resources and services

Extension agents can facilitate farmers' access to essential resources and services, including:

- Credit and financial services: Enabling farmers to access loans, grants, or subsidies to invest in climate-resilient practices and technologies
- Quality inputs: Providing access to high-quality seeds, fertilizers, and other inputs that are resilient to climate-related stressors
- Climate-resilient technologies: Facilitating access to technologies such as irrigation systems, drought-tolerant crop varieties, and climate-smart agricultural equipment
- Insurance services: Helping farmers access insurance products that protect them against climaterelated risks and losses
- Market information and linkages: Providing farmers with information on market trends and linking
 them to buyers, enabling them to make informed decisions and improve their income. By facilitating
 access to these resources and services, extension agents can help farmers overcome barriers to
 adopting climate-resilient practices, improve their productivity and income, and enhance their
 overall resilience to climate change (Antwi-Agyei & Stringer, 2020).

III. Principles of Climate-Smart Agricultural Extension

Effective climate-smart agricultural extension requires a set of guiding principles that prioritize the needs of farmers, promote sustainable agriculture practices, and incorporate climate information.

The following principles are essential for climate-smart agricultural extension:

A. Farmer-Centered Approach

A farmer-centered approach is a fundamental principle of effective climate-smart agricultural extension. This approach prioritizes the needs, interests, and capacities of farmers, recognizing them as key stakeholders in agricultural development. By valuing farmers' knowledge, SAEREM BOOK CHAPTERS First Published 2025 ISBN 978-978-60709-8-8 @ SAEREM World

experiences, and perspectives, agricultural extension services can develop tailored solutions that enhance their resilience to climate change (Yeleliere, Antwi-Agyei & Guodaar, 2023; World Bank Group, 2024).

Farmer-Centered Approach: Empowering Farmers in Climate-Smart Agriculture

A farmer-centered approach is a fundamental principle of effective climate-smart agricultural extension. This approach prioritizes the needs, interests, and capacities of farmers, recognizing them as key stakeholders in agricultural development. By valuing farmers' knowledge, experiences, and perspectives, agricultural extension services can develop tailored solutions that enhance their resilience to climate change (Prajapati, et al., 2025)

Key Elements of a Farmer-Centered Approach:

- i. Understanding farmers' local knowledge and experiences: Recognizing the importance of indigenous knowledge and experiences in developing effective climate-smart agriculture solutions.
- ii. *Identifying farmers' needs and concerns:* Engaging with farmers to understand their specific challenges, aspirations, and priorities.
- iii. Involving farmers in decision-making: Empowering farmers to participate in the decision-making process, ensuring that their voices are heard and their needs are addressed.
- iv. Developing tailored solutions: Creating solutions that are context-specific, practical, and relevant to farmers' needs and circumstances.

Benefits of a Farmer-Centered Approach (Nwaubani, 2023):

- Increased adoption of climate-smart practices: By prioritizing farmers' needs and concerns, agricultural extension services can promote the adoption of climate-smart practices that are relevant and effective.
- ii. Improved resilience to climate change: Farmer-centered solutions can enhance farmers' ability to adapt to climate change, reducing the risks associated with climate-related shocks and stresses.
- iii. Enhanced trust and collaboration: A farmer-centered approach fosters trust and collaboration between farmers and extension agents, leading to more effective and sustainable agricultural development outcomes.

Agricultural extension services can achieve more impactful and sustainable results by prioritizing a farmer-centered approach, which enables farmers to drive climate-smart agriculture initiatives.

B. Participatory and Inclusive Methods in Climate-Smart Extension

Participatory and inclusive methods are essential components of effective climate-smart extension services. These methods involve farmers, extension agents, and other stakeholders in the decision-making process, ensuring that diverse perspectives are considered and that the needs of all stakeholders are addressed (Gaur, Bunkar & Zade, 2025)

Benefits of Participatory and Inclusive Methods in Climate-Smart Extension

- i. *Context-Specific Solutions:* Participatory approaches enable the development of context-specific climate-smart practices that are tailored to the needs and circumstances of local farmers.
- ii. *Increased Adoption:* By involving farmers in the decision-making process, participatory methods can increase the adoption of climate-smart practices, as farmers are more likely to adopt practices that they have helped to develop.
- iii. *Improved Knowledge Sharing:* Participatory approaches promote knowledge sharing among stakeholders, enabling the exchange of information and best practices related to climate-smart agriculture.
- iv. Building Trust: Fostering a culture of participation and inclusion builds trust among stakeholders, which is critical for effective collaboration and cooperation in climate-smart extension (Clarkson, 2022).

Examples of Participatory Approaches in Climate-Smart Extension:

- i. Farmer Field Schools: Hands-on learning experiences where farmers can share knowledge, skills, and best practices related to climate-smart agriculture.
- ii. Community-Based Extension: Extension services that engage with local communities, promoting inclusive decision-making and addressing local needs related to climate change.
- iii. Participatory Vulnerability Assessments: Collaborative assessments that involve farmers and other stakeholders in identifying vulnerabilities and developing strategies to address them.
- iv. Climate-Smart Village Approach: A participatory approach that involves farmers, extension agents, and other stakeholders in developing and implementing climate-smart agriculture practices at the village level (Sushmita, Sonali & Smruti, 2023)

participatory and inclusive methods enable climate-smart extension services to foster trust, facilitate knowledge sharing, and increase the uptake of climate-smart practices, driving climate resilience and sustainable agriculture

C. Use of Climate Information and Early Warning Systems

The use of climate information and early warning systems is critical for supporting farmers adapt to climate variability and change. Climate information can include forecasts, seasonal outlooks, and alerts for extreme weather events. Early warning systems can help farmers prepare for and respond to climate-related shocks, reducing the risks associated with climate change. Agricultural extension services can provide farmers with access to climate information

and early warning systems, enabling them to make informed decisions about their farming practices (United Nations Development Programme, 2025).

D. Focus on Sustainable Agriculture Practices

A focus on sustainable agriculture practices is essential for promoting climate resilience and reducing the environmental impact of agriculture. Sustainable agriculture practices can include conservation agriculture, agroforestry, and integrated pest management. These practices can help farmers improve soil health, reduce greenhouse gas emissions, and enhance biodiversity. By promoting sustainable agriculture practices, agricultural extension services can support farmers in building resilient farming systems that can withstand the impacts of climate change (Gamage, 2023).

Climate-smart agricultural extension that prioritizes farmer needs, sustainable practices, and climate information can help farmers develop resilient systems, adapt to climate change, and improve productivity and food security.

IV. Effective Delivery Mechanisms for Climate-Smart Agricultural Extension

Effective delivery mechanisms are crucial for ensuring that climate-smart agricultural extension services reach farmers and have a meaningful impact. In this section, we will discuss various delivery mechanisms that have been successful in promoting climate-smart agriculture, including digital extension services, farmer field schools, public-private partnerships, and training and capacity building for extension agents.

A. Digital Extension Services

Digital extension services leverage technology to reach a wider audience and provide farmers with access to climate-smart agricultural information and advice. Examples of digital extension services include:

- Mobile Apps: Mobile apps can provide farmers with real-time weather forecasts, climate information, and advisory services. Apps can also be used to collect data on soil health, crop yields, and pest and disease management.
- ICT Tools: Information and Communication Technology (ICT) tools, such as video conferencing and online platforms, can be used to connect farmers with experts and provide them with access to climate-smart agricultural information and advice.
 (Priya, Sivanarayana & Nagendra Babu, 2025).

B. Farmer Field Schools and Demonstration Plots

Farmer field schools and demonstration plots are effective delivery mechanisms for promoting climate-smart agriculture practices. These approaches involve:

- Hands-on Learning: Farmer field schools and demonstration plots provide farmers with hands-on experience with climate-smart agricultural practices, such as conservation agriculture and integrated pest management.
- ii. Farmer-to-Farmer Learning: These approaches also facilitate farmer-to-farmer learning, where farmers can share their experiences and knowledge with each other.

 (Mandaza, Magagula, & Mitti, 2023).
- C. Public-Private Partnerships and Collaboration with Local Organizations

Public-private partnerships and collaboration with local organizations are essential for effective delivery of climate-smart agricultural extension services. These partnerships can:

- i. *Mobilize Resources:* Public-private partnerships can mobilize resources and expertise from both public and private sectors to support climate-smart agricultural extension services.
- ii. Increase Reach: Collaboration with local organizations can increase the reach of climate-smart agricultural extension services, particularly in rural and remote areas.
 (Shaktawat, Singh, Mallick & Anshuman, 2024).
- D. Training and Capacity Building for Extension Agents

Training and capacity building for extension agents are critical for ensuring that they have the necessary skills and knowledge to provide effective climate-smart agricultural extension services. This includes:

- Climate-Smart Agriculture Training: Extension agents need training on climate-smart agriculture
 practices, including conservation agriculture, integrated pest management, and climate
 information dissemination.
- Capacity Building: Capacity building programs can help extension agents develop the skills and knowledge needed to work effectively with farmers and other stakeholders (Antwi-Agyei & Stringer, 2020).

Benefits of Effective Delivery Mechanisms

Effective delivery mechanisms for climate-smart agricultural extension services can have numerous benefits, including:

- i. *Increased Adoption:* Effective delivery mechanisms can increase the adoption of climate-smart agricultural practices among farmers.
- Improved Livelihoods: Climate-smart agricultural extension services can improve farmers' livelihoods by increasing their resilience to climate change and improving their productivity and income.
- iii. Sustainability: Effective delivery mechanisms can also promote sustainability by ensuring that climate-smart agricultural practices are adopted and maintained over time. (world Bank, 2023)

Challenges and Opportunities

While effective delivery mechanisms are crucial for climate-smart agricultural extension services, there are also challenges and opportunities to consider (Kpodo & Nejadhashemi, 2025). These include:

- i. Scalability: Scaling up effective delivery mechanisms to reach a wider audience can be a challenge.
- ii. Sustainability: Ensuring the sustainability of climate-smart agricultural extension services over time can also be a challenge.
- iii. Insufficient Resources: Limited resources can hinder the implementation and effectiveness of climate-smart agricultural extension services.
- iv. Lack of Awareness: Limited awareness among farmers and stakeholders about climate-smart agriculture practices and benefits can slow adoption.
- v. Systemic Barriers: Existing systemic barriers, such as policy or institutional constraints, can limit the impact and reach of climate-smart agricultural extension services.

Opportunities

i. *Technology:* Leveraging technology, such as digital extension services, can provide opportunities for increasing the reach and effectiveness of climate-smart agricultural extension services.

By understanding the effective delivery mechanisms for climate-smart agricultural extension services, we can design and implement programmes that are more effective in promoting climate resilience and sustainable agriculture practices among farmers.

V. Case Studies and Examples

Successful Climate-Smart Agricultural Extension Programmes

Several initiatives worldwide have demonstrated the effectiveness of climate-smart agricultural extension programmes. Here are a few notable examples:

Kenya's Climate-Smart Agriculture Project: This project, supported by the World Bank, aims to enhance agricultural productivity and resilience to climate change. Key components include promoting climate-smart practices like conservation agriculture and agroforestry, improving access to climate-resilient crop and animal varieties and strengthening farmer organizations and extension services (World Bank, 2020).

India's National Innovations in Climate-Resilient Agriculture (NICRA): NICRA focuses on developing and disseminating climate-resilient agricultural technologies. The project conducts research on climate-resilient crop and animal varieties, demonstrates climate-smart practices through village-level interventions, and enhances capacity building for farmers and extension workers (Ministry of Agriculture & Farmers Welfare, 2021).

Rwanda's Climate-Smart Agriculture Programme: This programmes, implemented by the Ministry of Agriculture and Animal Resources, aims to increase agricultural productivity and resilience. It promotes climate-smart practices like mulching and terracing, improves access to climate-resilient seeds and fertilizers, and strengthens farmer cooperatives and extension services (Perelli, 2024).

These case studies highlight several key lessons and best practices for successful climatesmart agricultural extension programmes. Programmes that prioritize farmer needs, build capacity, foster partnerships, leverage technology, and prioritize monitoring and evaluation tend to be more effective. By adopting a farmer-centric approach, building capacity, fostering partnerships, leveraging technology, and prioritizing monitoring and evaluation, initiatives can enhance their impact and contribute to a more resilient agricultural sector. These lessons can inform the design and implementation of future climate-smart agricultural extension programmes.

VI. Conclusion

This chapter on Climate-Smart Agricultural Extension: Strategies for Enhancing Farmers' Adaptation to Climate Change has explored the critical role of agricultural extension in promoting climate-resilient agriculture. Key points include the importance of farmer-centered approaches, participatory and inclusive methods, and the use of climate information and early warning systems. Effective delivery mechanisms, such as digital extension services, farmer field schools, and public-private partnerships, have been discussed. Case studies from Kenya, India, Rwanda, and Nigeria highlight successful initiatives and best practices. Future directions and recommendations include integrating climate-smart agriculture into national policies, investing in capacity building, fostering partnerships, leveraging technology, and prioritizing monitoring and evaluation. By adopting these strategies, climate-smart agricultural extension programmes can enhance farmers' adaptation to climate change, improve agricultural productivity, and contribute to a more resilient agricultural sector.

The chapter concludes that climate-smart agricultural extension programmes can enhance farmers' adaptation to climate change, improve agricultural productivity, and contribute to a more resilient agricultural sector. It highlights the importance of farmer-centered approaches, participatory and inclusive methods, and effective delivery mechanisms. The chapter also provides recommendations for future directions, including integrating climate-smart agriculture into national policies, investing in capacity building, fostering partnerships, leveraging technology, and prioritizing monitoring and evaluation.

References

- Adamaagashi, I., Nzechie, O., Obiorah, J., & Idakwoji, A. A. (2023). Analyzing the critical impact of climate change on agriculture and food security in Nigeria. International *Journal of Agricultural and Earth Sciences*, 9(4), 1-27.
- Alam, M. J., Sarma, P. K., Begum, I. A., Connor, J., Crase, L., Sayem, S. M., & McKenzie, A. M. (2024). Agricultural extension service, technology adoption, and production risk nexus: Evidence from Bangladesh. *Heliyon*, 10(14), e34226. https://doi.org/10.1016/j.heliyon.2024.e34226
- Alotaibi, M. (2023). Climate change, its impact on crop production, challenges, and possible solutions. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51*(1), Article 13020.
- Antwi-Agyei, P., & Stringer, L. C. (2020). Improving the effectiveness of agricultural extension services in supporting farmers to adapt to climate change: Insights from northeastern Ghana. *Climate Risk Management*, 32, 100304. https://doi.org/10.1016/j.crm.2021.100304
- Berhanu, A. A., Ayele, Z. B., Dagnew, D. C., Fenta, A. B., & Kassie, K. E. (2024). Smallholder farmers' coping strategies to climate change and variability: Evidence from Ethiopia. *Climate Services*, *35*, 100509.
- Bhatnagar, S., Chaudhary, R., Sharma, S., Janjhua, Y., Thakur, P., Sharma, P., & Keprate, A. (2024). Exploring the dynamics of climate-smart agricultural practices for sustainable resilience in a changing climate. Environmental and Sustainability Indicators, 24, 100535.
- Bolan, S., Padhye, L. P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., Amarasiri, D., Hou, D., Zhou, P., Biswal, B. K., Balasubramanian, R., Wang, H., Siddique, K. H., Rinklebe, J., Kirkham, M., & Bolan, N. (2024). Impacts of climate change on the fate of contaminants through extreme weather events. *Science of The Total Environment*, 909, 168388. https://doi.org/10.1016/j.scitotenv.2023.168388
- Brandon, (2024, April 19). Key farming problems affecting crop yield and ways to improve. Brandon BioScience. https://brandonbioscience.com/crop-yield-improvements/
- Cho, R. (2022, January 27). How climate change will affect plants. Columbia Climate School.
- Clarkson, G., Dorward, P., Poskitt, S., Stern, R. D., Nyirongo, D., Fara, K., Gathenya, J. M., Staub, C. G., Trotman, A., Nsengiyumva, G., Torgbor, F., & Giraldo, D. (2022). Stimulating small-scale farmer innovation and adaptation with Participatory Integrated Climate Services for Agriculture (PICSA): Lessons from successful implementation in Africa, Latin America, the Caribbean and South Asia. *Climate Services*, *26*, 100298. https://doi.org/10.1016/j.cliser.2022.100298

- EOS Data Analytics (EOSDA). (2025). Soil Conservation Methods & Benefits of Implementation. Last updated: May 23, 2025. Retrieved from https://eos.com/blog/soil-conservation/
- Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. *Farming System*, 1(1), 100005. https://doi.org/10.1016/j.farsys.2023.100005
- Gaur, R. S., Bunkar, R. C., & Zade, S. S. (2025). Participatory extension approaches: Engaging farmers as stakeholders. In Emerging paradigms in agricultural extension and development (Vol. 1). Nitya Publications.
- Godde, C., Mason-D'Croz, D., Mayberry, D., Thornton, P. K., & Herrero, M. (2021). Impacts of climate change on the livestock food supply chain: A review of the evidence. Global Food Security, 28, 100488. doi: 10.1016/j.gfs.2020.100488
- Ingrao, C., Strippoli, R., Lagioia, G., & Huisingh, D. (2023). Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. *Heliyon*, 9(8), e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
- Jha, S., & Singh, S. (2021). Role of agriculture extension for climate smart agriculture. In Implications for climate smart agriculture. Biotech Books.
- Kim, H., & Lee, M. (2023). Effects of Climate Change and Drought Tolerance on Maize Growth. *Plants*, 12(20), 3548. https://doi.org/10.3390/plants12203548
- Kpodo, J., & Nejadhashemi, A. P. (2025). Navigating challenges/opportunities in developing smart agricultural extension platforms: Multi-media data mining techniques. *Artificial Intelligence in Agriculture*, *15*(3), 426-448. https://doi.org/10.1016/j.aiia.2025.04.001
- Krishna Priya, N., Khatri, A., Karki, P., Samota, S. D., Vishwakarma, S. K., Sukdeve, E. K., Tripathi, S., & Pathak, A. K. (2025). The important role of extension services in strengthening the capacity of farmers' resilience to climate change in India. Journal of Experimental Agriculture International, 47(3), 204-223. (link unavailable)
- Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., Kogo, B. K., & Ratnayake, S. (2021). Climate change and future of agri-food production. Future Foods, 49-79. https://doi.org/10.1016/B978-0-323-91001-9.00009-8
- Mabhaudhi, T., Dirwai, T. L., Taguta, C., Senzanje, A., Abera, W., Govid, A., Dossou-Yovo, E. R., Aynekulu, E., & Petrova Chimonyo, V. G. (2024). Linking weather and climate information services (WCIS) to Climate-Smart Agriculture (CSA) practices. *Climate Services*, *37*, 100529. https://doi.org/10.1016/j.cliser.2024.100529

- Madhuri (2023). How do climate information services (CIS) affect farmers' adaptation strategies?

 A systematic review. *Climate Services*, *32*, 100416. https://doi.org/10.1016/j.cliser.2023.100416
- Mandaza, M., Magagula, F., & Mitti, J. (2023). CCARDESA Farmer Field School Approach as a Driver to the Uptake of Climate Smart Agriculture Technologies. Report for the Accelerating Impacts of CGIAR Climate Research in Africa (AICCRA).
- Ministry of Agriculture & Farmers Welfare. (2021, August 6). National Innovation on Climate Resilient Agriculture. Press Information Bureau, Government of India. Release ID: 1743354.
- Mirzabaev, A., Bezner Kerr, R., Hasegawa, T., Pradhan, P., Wreford, A., Cristina Tirado von der Pahlen, M., & Gurney-Smith, H. (2022). Severe climate change risks to food security and nutrition. *Climate Risk Management, 39,* 100473
- Mishra, S., Spaccarotella, K., Gido, J., Samanta, I., & Chowdhary, G. (2023). Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. *International Journal of Molecular Sciences*, 24(21), 15670. https://doi.org/10.3390/ijms242115670
- Ncoyini, Z., Savage, M., & Strydom, S. (2022). Limited access and use of climate information by small-scale sugarcane farmers in South Africa: A case study. *Climate Services*, *26*, 100285. https://doi.org/10.1016/j.cliser.2022.100285
- Nega, A. (2024). Climate Change Impacts on Agriculture: A Review of Plant Diseases and Insect Pests in Ethiopia and East Africa, With Adaptation and Mitigation Strategies. *Advances in Agriculture*, 2025(1), 5606701. https://doi.org/10.1155/aia/5606701
- Nwaubani, B. (2023). The Farmer-Centric Approach to Agricultural Innovation: A Recipe for Success. FutuX Agri-consult Ltd.
- Ogisi, O. D., & Begho, T. (2023). Adoption of climate-smart agricultural practices in sub-Saharan Africa: A review of the progress, barriers, gender differences and recommendations. *Farming System, 1*(2), 100019.
- Omokaro, G. O. (2024). Multi-impacts of climate change and mitigation strategies in Nigeria:
- Paparrizos, S., Dogbey, R. K., Sutanto, S. J., Gbangou, T., Kranjac-Berisavljevic, G., Gandaa, B. Z., Ludwig, F., & Van Slobbe, E. (2023). Hydro-climate information services for smallholder farmers: FarmerSupport app principles, implementation, and evaluation. *Climate Services*, 30, 100387. https://doi.org/10.1016/j.cliser.2023.100387

- Perelli, C., Cacchiarelli, L., Mupenzi, M., Branca, G., & Sorrentino, A. (2024). 'Unlock the Complexity': Understanding the Economic and Political Pathways Underlying the Transition to Climate-Smart Smallholder Forage-Livestock Systems: A Case Study in Rwanda. *Economies*, 12(7), 177. https://doi.org/10.3390/economies12070177
- Prajapati, C. S., Priya, N. K., Bishnoi, S., Vishwakarma, S. K., Buvaneswari, K., Shastri, S., ... & Jadhav, A. (2025). The role of participatory approaches in modern agricultural extension: bridging knowledge gaps for sustainable farming practices. *Journal of Experimental Agriculture International*, 47(2), 204-222.
- Priya, K., Sivanarayana, G., & Nagendra Babu, N. (2025). E-Extension in Agriculture: Digital Platforms. Chapter 3 in ICTs in Agricultural Extension: Tools, Technologies, and Applications
- Shaktawat, P., Singh, M. S., Mallick, B., & Anshuman, J. (2024). Public-Private Partnership in Extension Organizations. In Navigating Agricultural Extension: A Comprehensive Guide. AkiNik Publications.
- Sushmita S., Sonali M., & Smruti R. P. (2023). Participatory Extension Approach: Empowering Farmers. Biotica Research Today, 5(4), 326-328.
- Tahasin, A., Haydar, M., Hossen, M. S., & Sadia, H. (2024). Drought vulnerability assessment and its impact on crop production and livelihood of people: An empirical analysis of Barind Tract. *Heliyon*, 10(20), e39067. https://doi.org/10.1016/j.heliyon.2024.e39067
- United Nations Development Programme. (2025, February 28). What are early warning systems and why do they matter for climate action? https://climatepromise.undp.org/news-and-stories/what-are-early-warning-systems-and-why-do-they-matter-climate-action#:~:text=What%20are%20climate%20information%20and,developing%20effective%20early%20warning%20systems.
- United States Environmental Protection Agency [USEPA]. (2025). Climate change impacts on agriculture and food supply. https://www.epa.gov/climateimpacts/climate-change-impacts-agriculture-and-food-supply
- Verdesian Life Sciences. (2024, October 2). Sustainability: Water conservation in agriculture.
- Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and

- natural resource management in the United States. *Science of The Total Environment*, *733*, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782
- World Bank Group. (2024). Climate-smart agriculture. Retrieved from https://www. Worldbank.org/en/topic/climate-smart-agriculture#:~:text=The%20global%20 agrifood% 20system%20must, productivity.
- World Bank. (2020, September 8). Kenya Climate Smart Agriculture Project (P154784): Request for Expression of Interest (Notice No. 0P00096116).
- Yeleliere, E., Antwi-Agyei, P., & Guodaar, L. (2023). Farmers response to climate variability and change in rainfed farming systems: Insight from lived experiences of farmers. *Heliyon*, 9(9), e19656. https://doi.org/10.1016/j.heliyon.2023.e19656