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Preface 

This book adopts an exegetical approach as well as a pedagogic model, making it attractive 

agriculture and environmental economics teachers, professional practitioners and scholars. It is 

eschews pedantry and lays bars the issues in such clarity that conduces to learning. The book 

elaborates on contemporaneous climate change, food security, national security and environmental 

resources issues of global significance and at the same time, is mindful of local or national 

perspectives making it appealing both to international and national interests. The book explores 

the ways in which climate change, food security, national security and  environmental resources  

issues are and should be presented to increase the public’s stock of knowledge, increase awareness 

about burning issues and empower the scholars and public to engage in the participatory dialogue 

climate change, food security, national security and environmental resources necessary in policy 

making process that will stimulate increase in food production and environmental sustainability. 

Climate Change, Food Security, National Security and Environmental resources: Global issues 

and Local Perspectives is organized in four parts. Part One deals with Climate Change with Six 

Chapters, Part Two is concerned with Food Security with Nine chapters, Part Three deals with 

National Security with Five Chapters, while Part Four pertains Environmental Resources, has Five 

Chapters. 

Ahmed Makarfi / Eteyen Nyong 

April 2024 
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Chapter 3: 

A Review of the Impact of Bush Burning on the Environment: Potential 

Effects on Soil Chemical Attributes 

Chiroma, A. M.  and Alhassan, A. B., 

              Abstract 

Bush burning, whether as a result of a wildfire or a controlled burn, has been shown to not only 

affect the appearance of the landscape but also the quality of the soil as well. Interest in gaining 

a proper understanding of the impact of fire on the ecosystem is particularly becoming 

increasingly important in the tropics given the fast-changing climatic regimes associated with 

climate change. However, climate change-induced changes in atmospheric processes influence 

the key factors that determine both the severity of fire regimes as well as the ecosystem’s response. 

This is particularly so because climate change favours more extreme environmental conditions 

(e.g., low humidity, high temperatures, and high wind speed) that exacerbate the negative impacts 

of fire. Uncontrolled bushfires impact the soil in several ways with the magnitude of the 

disturbance largely dependent upon the fire intensity, duration and recurrence, fuel load, and soil 

characteristics. The impact on soil properties is complex, leading to different impacts based on 

these factors. Despite burning off the vegetation during land clearing for cultivation is a common 

farming practice among farmers in many parts of the tropics, very little is known by perpetrators 

of this practice about its impacts on the soil and its dwellers. This paper therefore reviews research 

findings from several works conducted across the globe to gain insight into the effects of wildfire 

and prescribed fire on the soil's chemical and biological attributes. The knowledge of soil response 

in terms of these two properties to fire events is useful in guiding the proper implementation of 

rehabilitation and restoration strategies in the short-term, medium-term, and long-term. 

Keywords: Wildfires, Prescribed fire, Severity, Microbial biomass, Soil organic matter, 

Nutrient availability. 

Introduction  

Bush burning, defined as the removal of the natural vegetation cover that protects the soil surface 

through the use of fire has a detrimental effect on the environment, health, and the economy 
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(Otitoju et al., 2019) (Fig. 1). Fires are considered a destructive factor in most forest ecosystems 

of tropical and temperate climates (Fernández-García et al. 2019a, b), and are viewed as global 

phenomena affecting most land areas (Bento-Gonçalves et al. 2012; Agbeshie et al., 2022). Fires 

affect living organisms directly (causing their death) and indirectly, transforming their living 

environment (affecting food availability and quantity, heterogeneity of the environment, and pH 

increase) (Barreiro and Díaz-Raviña, 2021). The consequence of uncontrolled bush burning is 

most obvious in areas characterized by torrential rainfall, strong wind, and hot solar radiation 

(Otitoju et al., 2019). This according to the authors is because even a slight disturbance of the 

vegetal mantle may have a considerable impact on organic matter content and vegetation 

biodiversity. In addition, bush fire reduces not only the plant species composition, abundance, 

richness, and biodiversity but also disrupts the natural soil fertility (Salim et al., 2022). However, 

over the past 50,000 years, anthropogenic fires have been recurrently used in livestock and 

agriculture, but fire frequency, extent, and severity have greatly increased in the last few decades, 

bringing changes to the vegetation composition and soil nutrient stocks, particularly in the savanna 

ecosystems (Pellegrini et al., 2021). Bush fires are key ecosystem modifiers affecting the 

biological, chemical, and physical attributes of forest soils. Change in soil properties after fire 

produces varying responses in the water, vegetation dynamics, and fauna of ecosystems. The wide 

range of effects is due to the inherent pre-burn variability in these resources, fire behaviour 

characteristics, season of burning, and pre-fire and post-fire environmental conditions such as 

timing, amount, and duration of rainfall (Clark, 2001; Verma and Jayakumar, 2012). Several 

studies have reported the impact of fire on soil chemical attributes (Table 1) with the extent of soil 

disturbance by fire largely dependent on fire intensity, duration and recurrence, fuel load, and soil 

characteristics (Agbeshie et al., 2022). Table 1 summarizes the findings of different studies about 

the impact of fire on soils of various ecosystems across the world. The impact on soil properties is 

intricate, yielding different results based on these factors. Studies have revealed that African 

savannas which constitute roughly 50% of the global terrestrial ecosystems (Lehmann et al. 2011) 

has in the recent past undergone a rapid transformation through anthropogenic activities including 

the indiscriminate use of fire (Dwomoh and Wimberly, 2017; Amoako and Gambiza, 2019).   

Fires, whether wild or prescribed defined as low-intensity fires used to achieve specific 

management objectives (Hiers et al. 2020; Francos and Úbeda, 2021) can have a marked effect on 

soil quality through its effect on the OM stock. This is evident because almost all OM which is the 
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precursor of plant nutrients is consumed during fire thereby affecting long-term crop productivity 

and soil fertility (Tadesse, 2016). Since fire and traditional practices of soil burning remove OM 

and their colloid fractions, and since such materials furnish most of the microbiological activities 

and the base exchange sites in the soils, the removal of such essential particles and their colloids 

decreases the fertility of the soils (Assefa, 1978). Rates of nutrient loss from slash fires are among 

the highest of any fires (Kauffman et al., 1995), and sustaining site fertility depends on a detailed 

understanding of the nutrient fluxes and losses that accompany such fires. Concerns about the 

threats posed by bush fire to the sustainability of low-input agriculture in many farming systems 

where the practice is prevalent are heightened by the current climate change predictions, coupled 

with more recurrent and prolonged droughts in many of these areas (Caon et al. 2014).   

There have been several recent predictions on the possible increase in fire duration, intensity, and 

frequency in forested regions, especially in the tropics, because of higher temperatures (Zhang and 

Biswas, 2017; Auclerc et al. 2019; Addo-Fordjour et al. 2020). Therefore, increased fire risk will 

not only affect forest flora, but also the soil's physical, chemical, and biological properties (Romeo 

et al. 2020). Fire influences forest soils in complex ways but has not been studied as 

comprehensively compared to the effects of vegetation (Agbeshie et al. 2022). Fires on forest soils 

influence a wide range of processes, including organic matter loss (Knicker, 2007), nutrient 

availability and their dynamics (Cavard et al. 2019), and revival of vegetation after the fire 

(Rodríguez et al. 2018). Consequently, information on the changes to soil properties following 

wild or prescribed fire is key to finding sustainable and adaptable management practices for soils 

and forests (Zhang and Biswas, 2017). Despite its catastrophic effect on the ecosystem and physio-

chemical properties of the soil, bush burning is among the several land-clearing management 

options employed by farmers in many parts of the tropics (Edem et al. 2013; Ubuoh et al. 2017; 

Ibitoye et al., 2019). The practice is very common among the low-input farmers in Nigeria with 

little or no knowledge about the consequent effects of such practice on the soil (Ibitoye et al., 

2019).  The objective of this paper is therefore to review the current knowledge regarding the 

impacts of fire on soil quality particularly as it relates to chemical and biological properties. 

Impact of Fire on Chemical Properties of Soil 

Potential impact on soil organic matter (SOM): SOM in agricultural soils is often concentrated 

on, or near, the soil surface and is made up of six easily recognized components: (1) the litter layer, 
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consisting of recognizable plant litter; (2) the duff layer, composed of partially decomposed, but 

recognizable, plant litter; (3) the humus layer, consisting of extensively decayed and disintegrated 

organic materials, which are sometimes mixed with mineral soil; (4) decayed wood, consisting of 

the residual lignin matrix from decaying woody material that is on the soil surface or has been 

buried by the forest floor; (5) charcoal, or extensively charred wood mixed into the mineral soil; 

and (6) the upper mineral soil horizon (A horizon) of the underlying mineral soil (Harvey, 1982; 

DeBano, 1990).  Nutrients in fuel and SOM are recycled by biological decomposition processes 

in environments where temperatures rarely approach 38°C and sufficient moisture is available to 

sustain active microbial activity (DeBano, 1990). Under these mild conditions, soil 

microorganisms decompose SOM and slowly release many of the essential nutrients over time. In 

contrast, during a fire the nutrients stored in fuels and SOM are subjected to severe heating and, 

as a result, undergo various irreversible transformations during combustion. During the fire, heat 

transfer from burning biomass on the surface and within the soil is directly responsible for the 

changes that occur (O’Brien et al. 2018). Generally, changes in SOC are variable and depend on 

fire duration, available biomass, moisture content, and fire type and intensity (Reyes et al. 2015; 

Agbeshie et al. 2022). Therefore, the effect on soil processes and their intensity influenced by fire 

are highly variable and no generalized tendencies can be suggested for most of the fire-induced 

changes in humus composition (Gonza ́lez-Pe ́rez et al., 2004). Low-intensity prescribed fire 

usually results in little change in soil carbon, but intense prescribed fire or wildfire can result in a 

huge loss of soil carbon (Johnson, 1992). Charcoal can promote rapid loss of forest humus and 

belowground carbon during the first decade after its formation because charred plant material 

causes accelerated breakdown of simple carbohydrates (Wardle et al., 2008). Fernandez et al., 

(1997) suggested that in low-intensity fire, lipids are the least affected group whereas 90% of 

water-soluble cellulose, hemicelluloses, and lignin are destroyed. 

Literature on the impacts of fire on soils is highly variable and suggests that low-intensity fires 

result in little or large change in the SOC, whereas high-intensity fires result in decreased SOC 

(Caon et al. 2014). Elsewhere, Alcañiz et al. (2016) and Liu et al. (2018) also recorded up to 19.4% 

and 11.2% increase in SOC after a low-intensity prescribed fire and a wildfire, respectively. 

Another study by Badía et al. (2014) showed a 27.9% reduction in SOC in the 1- cm soil layer 

after a highly severe fire. Similarly, Moya et al. (2019) recorded a 21.0% reduction in SOM at a 

moderate to high-intensity wildfire. Reduction in SOC after high-intensity fires may be due to 
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several factors, including the combustion of SOM, increased rates of carbon mineralization, 

volatilization, and solubilization because of high pH (nutrient-rich ash) (RodriguezCardona et al. 

2020). In contrast, Akburak et al. (2018) and Fernández-García et al. (2019a, b) did not observe 

any significant change in SOC following wildfire. Thus, low-intensity fires are associated with 

increased SOC due to increased pyrogenic carbon resulting from incomplete combustion of 

organic matter, decomposition of incomplete burnt biomass, and the addition of ash (Sánchez 

Meador et al. 2017; Santín et al. 2018; Hu et al. 2020). Studies suggest that low-intensity fires are 

associated with increased SOC due to increased pyrogenic carbon resulting from incomplete 

combustion of organic matter, decomposition of incomplete burnt biomass, and the addition of ash 

(Sánchez Meador et al. 2017; Santín et al. 2018; Hu et al. 2020; Agbeshie et al. 2022). The 

combustion of carbon and the ash produced during low-intensity forest fires are referred to as black 

carbon (BC) (Thomas et al. 2017; Gao et al. 2018). Black carbons are highly condensed carbons, 

resistant to microbial attacks that are generated after a fire (Agbeshie et al. 2022). Their presence 

in the soil has been associated with an increased SOM pool (Nave et al. 2011; Caon et al. 2014; 

Agbeshie et al. 2022).  

Impact on nutrient dynamics: Nutrients contained in fuel (litter) and SOM are cycled by biological 

decomposition processes in environments where temperatures rarely exceed 38°C and sufficient 

moisture is available for sustaining active microbial activity (DeBano, 1990). Under these mild 

conditions, soil microorganisms decompose SOM and slowly release many of the essential 

nutrients over time. In contrast, during a fire the nutrients stored in fuels and SOM are subjected 

to severe heating and, as a result, undergo various irreversible transformations during combustion. 

Studies have shown that the responses of individual nutrients differ and each has its inherent 

temperature threshold. Threshold temperatures are defined as those temperatures where the 

volatilization of a nutrient occurs. For discussion purposes, these thresholds can be divided into 

three general nutrient categories: sensitive, moderately sensitive, and relatively insensitive. 

Nitrogen (Hosking, 1938) and Sulphur (Tiedemann, 1987) are considered sensitive because they 

have thresholds as low as 200 to 375°C, respectively. Potassium (K) and P are moderately 

sensitive, having threshold temperatures of 774 °C (Raison et al., 1985). Magnesium (Mg), 

calcium (Ca), and manganese (Mn) are relatively insensitive, with high threshold temperatures of 

1,107 °C, 1,484 °C, and 1,962 °C respectively (DeBano, 1990). However, because phosphorus is 

not readily mobile as nitrogen compounds, its concentration increases mainly in the ash and on, or 
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near, the soil surface (DeBano 1989; DeBano and Klopatek 1988). However, the behaviour of 

micronutrients, such as Fe, Mn, Cu, Zn, B, and Mo, concerning fire is not well known because 

specific studies are lacking (Certini, 2005, Verma and Jayakumar, 2012). 

Both wild and prescribed fires dramatically affect the nutrient cycling and other chemical and 

biological properties of the underlying soil. Burning increases the availability of most plant 

nutrients (Adejumobi et al., 2021) even though substantial amounts of carbon (C), nitrogen (N), 

sulphur (S), and phosphorus (P) can also be lost to the atmosphere by volatilization during the 

combustion of litter and SOM (DeBano, 1990). Fire acts as a rapid mineralizing agent that releases 

nutrients instantaneously as contrasted to natural decomposition processes, which may require 

years or, in some cases, decades (St. John and Rundel, 1976). Organic matter acts as the primary 

reservoir for several nutrients and, therefore, is the source for most of the available P and S, and 

virtually the entire available N (DeBano, 1990). Studies have shown that concentrations of 

exchangeable cations (Ca2+, Mg2+, K+, and Na+), P, and mineralized N (NH4+ and NO3−) increased 

with increasing fire intensity (Francos et al. 2019; Verma et al. 2019; Chungu et al. 2020). This 

increase in concentrations of the basic cations and phosphorus is a result of their high vaporization 

thresholds compared to NH4+ and NO3− (James et al. 2018). However, the increase in soil 

exchangeable cation concentrations following fire disturbance may be short-lived and may soon 

return to their pre-fire levels (Granged et al. 2011; Maynard et al. 2014; James et al. 2018). Due 

to their high vaporization thresholds, losses of exchangeable cations in soils may arise only from 

erosion of ash and leaching of cations, coupled with plant uptake during post-fire succession (Caon 

et al. 2014). In contrast, under cooler soil-heating regimes, substantial amounts of NH4-N can be 

found in the ash and underlying soil (DeBano, 1990). Therefore, depending on the severity and 

duration of the fire, concentrations of NH4-N may increase, decrease, or remain unchanged. The 

ash which is the principal product of burnt material although rich in phosphorous, nitrogen, and 

potassium can be easily washed away by rain.  

Although the relationship between fire and soil nutrients is complex because of the interactions 

among many factors, fire intensity is usually the most critical factor affecting post-fire nutrient 

dynamics, with greater nutrient losses occurring with higher fire intensity (DeBano, 1990). Fire 

intensity both directly and indirectly impacts many of the mechanisms that affect nutrient pools 

and cycling. In the Southern part of Nigeria, slash and burn method of land clearing is an integral 
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part of the traditional farming system, Ubuoh et al. (2017) investigated the effects of slash and 

burn method of land clearing on the soil nutrient dynamics of the upper 30 cm soil layer. The study 

revealed that at the upper 0-15 cm depth, the unburnt plot recorded a decrease in pH, and an 

increase in K and base saturation, while the burnt plot recorded an increase in SOM, Total N, 

Available P, Ca2+, Mg2++, Na+ and EC. At the depth of 15-30cm, the unburnt plot recorded a 

decrease in pH, Mg, and EC while the burnt plot recorded the highest values in other selected 

parameters than the unburnt plot. This and most other studies of slash-and-burn documented an 

increase in soil nutrient availability after burning (De Rouw, 1994). Post-burn increases in soil 

fertility (Tables 2 and 3) have generally been attributed to nutrient-rich ash in nearly all tropical 

forest types where slash-and-burn has been examined (Maass, 1995; Ubuoh et al. 2017; Numbere 

and Obanye, 2023)). Similarly, Muqaddas et al. (2015) and Francos et al. (2019) found increased 

soil pH in burnt soils following prescribed fire. 

In grassland vegetation, many researchers have observed an increase in soil nutrients following a 

low-intensity wildfire (Inbar et al., 2014; Hosseini et al., 2017; Liu et al., 2018). Low-intensity 

fires with ash deposition on soil surfaces cause changes in soil chemistry, including an increase in 

available nutrients and pH (Agbeshie et al. 2022). Under a low-intensity prescribed fire in a Q. 

frainetto forest, Akburak et al. (2018) also found significantly high Ca2+ and Mg2+ levels in the A 

horizon (upper 5 cm) immediately after burning. In addition, Johnson et al. (2014) reported an 

elevated and consistent Ca2+ content two years post-fire. However, other researchers have reported 

no change or a decline in exchangeable cations after fires. For example, in grassland vegetation, 

Liu et al. (2018) reported an insignificant amount of K+ between pre- and post-wildfire- affected 

soils. In contrast, Raison et al. (1986) reported a reduction in nutrient pools even with low-intensity 

fires. The study showed a decline of 50–75% of N, 35–50% of P, and 25–50% of Mg via 

volatilization and oxidation processes. Studies have shown that certain nutrients are also more 

vulnerable to fire than others. For example, levels of potassium (K), calcium (Ca), and magnesium 

(Mg) may be increased or unaffected by fire, while sulphur (S) and nitrogen (N) usually decline 

(Agbeshie et al. 2022). Some studies revealed that burned soils have lower nitrogen than unburned 

soils, higher calcium, and nearly unchanged potassium, magnesium, and phosphorus stocks (Neff 

et al., 2005). In contrast, Dzwonko et al. (2015) reported significantly higher exchangeable cations 

in burnt plots over controls in a Scots pine forest when a high-severity wildfire occurred. 

Temperature specifically regulates the volatilization of nutrients within the soil. In organic matter, 
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N begins to volatilize at 200 °C (Knicker, 2007), while Ca requires 1484 °C to vaporize (Johnston 

and Barati, 2013). 

Impact of Fire on Biological Properties of Soil 

Potential effects on soil macro-organisms: Soil-dwelling organisms, most of whom live in the 

uppermost soil layer where fire-imposed temperatures on the ground are the highest suffer 

numerous consequences of fire disturbance. A large part of soil-dwelling organisms resides in the 

surface layer, where the organic fraction, which comprises mainly plant residue, animal remains, 

and humic substances, often prevail over the inorganic inner materials. Whereas vertebrates can 

escape overheating death by running away, searching for wet niches, or burrowing deep into soil 

invertebrates and microorganisms, which have little or no mobility, succumb more easily to fire 

(Certini et al., 2021). Generally, the direct effects of fire on soil-dwelling invertebrates are less 

marked than those on microorganisms, due to greater mobility which increases the potential for 

invertebrates to escape heating by burrowing deep into the soil (Certini, 2005). The general pattern 

of soil-borne organisms i.e. macroinvertebrate responses to fire is often driven by changes in 

habitat structure, or by changes in the amount or the quality of food resources. Whenever fire 

affects vegetation, temperature or moisture, or the nutrient status of soil, there is potential for 

impact on the soil invertebrate community (DeBano, 1990). 

Some arthropod groups increased in abundance but most decreased soon after fire. A study of 

litter-dwelling and soil-dwelling macroinvertebrates showed that the density of macroinvertebrates 

was significantly reduced one year after a prescribed fire (Kalisz and Powell, 2000). The authors 

also reported a reduction in the number of beetle larvae following fire, and further proposed that 

repeated fire in a single location could potentially have long-term negative effects on beetle 

populations and on the functions these beetles perform within the system. Findings of several 

studies conducted in grassland soils in Kansas that focused on the responses of soil 

macroinvertebrates to fire revealed that earthworm populations are strongly affected by fire in tall 

grass prairie soils, and the usual pattern observed is for fire to increase the abundance of 

earthworms in undisturbed areas (James, 1995). However, in more disturbed areas (i.e. close to 

human habitations), fire also has the interesting effect of limiting the colonization of non-native 

earthworms into prairie soils (Callaham et al. 2003). Results of this study suggested that the native 
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earthworms in grassland soils are adapted to the warmer soil conditions frequently found in burned 

prairie, and that because fire improves the performance of grasses, the native earthworms may 

have strong habitat preferences for soils with abundant grassroots. Several studies have reported 

decreased microarthropod abundance immediately following a fire (e.g. Sgardelis and Magaris, 

1993). For example, Lussenhop, (1976) reported greater microarthopod abundance in a biennially 

burned prairie compared to an unburned prairie. Whereas a substantial resilience to fire in 

arthropod populations has also been documented in some studies. others found no effect of burning 

on microarthropod abundance. Coleman and Rieske (2006) examined the effect of early spring 

prescribed fires on forest floor arthropod abundance and diversity in mixed hardwood-pine of 

southeastern Kentucky (USA), and found that leaf-litter arthropod abundance, diversity, and 

richness did not differ among the pre-burned, unburned and single burned areas. The study by 

Swengel, (2001) suggests that leaf-litter and soil-dwelling arthropods might be directly affected 

by increases in temperature and exposure or indirectly affected through changes in habitat 

availability and quality. Findings from these and other similar studies suggest that there is no 

pattern of micro and mesofauna response to fire, instead, several factors are implicated in the 

responses of these organisms to fire (Mataix-Solera et al., 2009). 

Potential effects on soil micro-organisms: Microbial biomass reflects the microbial status of soil 

responsible for maintaining the nutrients and fertility of the soil and therefore, contributes to the 

biological properties of the soil (Mataix-Solera et al. 2009; Manral et al., 2020). Microbes are 

generally known to be solely responsible for nutrient cycling and play a major role in the 

transformation of nutrients and therefore, act as soil health indicators (Singh et al., 2021). Fire 

affects biological properties by directly killing or denaturing soil biota through combustion or 

indirectly by post-fire plant recovery or changes in soil organic matter (Knelman et al. 2015; 

Jonathan et al. 2016; Ibáñez et al. 2021). It has been suggested that the changes in the nutrient 

supply due to the loss of plant residues could also be a reason for the reduction in microbial 

biomass after fire (Mabuhay et al. 2003; Smith et al. 2008). Singh et al., (2022) in their study on 

the impact of forest fire on soil microbial properties in the pine and oak forests of the Garhwal 

region of Uttarakhand Himalaya, India reported a reduction in microbial biomass (Cmic) of pine 

forests in Pauri and Tehri district were 61.7 and 17.4%, respectively, whereas in the oak forest, 

the percentage reductions of Cmic were much higher (75.8% in Pauri and 49.6% in Tehri 
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district). The Cmic at the control and burnt sites of the oak forest was found to be greater as 

compared with the pine-dominated forest. This according to the authors could be attributed to the 

greater litter input with the oak forest which provides a greater carbon source pool for microbial 

utilization when compared to the pine forest. A similar reduction in microbial biomass after the 

fire has been reported in many studies (Strand, 2011; Holden and Treseder, 2013; GironaGarcía 

et al. 2018). Several other researchers have documented the impact of forest fires on soil 

biological properties (Table 4ab). These studies revealed that the different microbial properties 

(related to mass, activity, and diversity) showed a different sensitivity to detect fire impact as 

well as different trends over time (immediate, short-, medium-, and long-term). In general, 

microbial activity and biomass changes can be transitory, and their values can reach pre-fire ones 

(Barreiro and Díaz-Raviña, 2021). Studies also suggest that the loss of microbial biomass during 

a fire depends upon the intensity and duration of the fire (Girona-García et al. 2018; Lucas-Borja 

et al. 2019). Other studies attributed the observed reduction and diversity in soil microbial 

biomass after fire disturbance to factors such as the unavailability of soil carbon and nutrients 

(Zhou et al. 2018) as well as topographic positions such as ridge, middle slope, and valley 

bottom (Mabuhay et al. 2016; Girona-García et al. 2018).  

In their review of prescribed burning on soil attributes, Alcañiz et al. (2018) noted that the 

temperature needed to kill most soil biological matter ranges from 50 to 120 °C. In other studies, 

Santín and Doerr (2016) also noted that temperatures from 50–150 °C result in the killing of fine 

roots, bacteria, fungi, and seeds within the soil. Microbial groups differ significantly in their 

sensitivity to temperature and nitrifying bacteria appear to be particularly sensitive to soil heating 

(Dunn et al. 1985). Aerobic heterotrophic bacteria, including the acidophilic and sporulating ones, 

were stimulated by fire while cyanobacteria, was depressed (Verma and Jayakumar, 2012). 

Another important group of soil microorganism that are particularly sensitive to soil heating during 

a fire are endo- and ectomycorrhizae. Because most ectomycorrhizae are concentrated in the 

organic matter on or near the soil surface, the loss of shallow organic layers may be at least partially 

responsible for the reported fire-related reductions. For example, the study by Stendell et al. (1999) 

showed that the total ectomycorrhizal biomass in the upper soil layer of the unburned plots did not 

change to appreciable level, while in the burnt site, the destruction of the uppermost organic layer 

resulted in an eight-fold reduction in total ectomycorrhizal biomass. Mycorrhizal biomass in the 
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two mineral layers was not significantly reduced by the fire. In a related study, forest fire was 

found to affect the proliferation of arbuscular mycorrhizal (AM) fungi by changing the soil 

conditions (Rashid et al., 1997). These workers also reported that compared with a nearby control 

area, the burnt site had a similar number of total spores but a lower number of viable AM fungal 

propagules. Regarding the impact of fire on soil microbial diversity, Castano et al. (2020) observed 

a decrease in the relative abundance of ectomycorrhizal species four years after a medium-severity 

prescribed fire. However, in the long term, a decrease in bacterial and fungal diversity was found 

14 years after a wildfire (Huffman and Madritch, 2018). Long-term shifts in the composition of 

ectomycorrhizal fungal communities have been observed after wildfires and prescribed fires 

(Taudière et al., 2017). The fire impact on soil and the following postfire recovery of the 

microbiota can differ depending on the fire recurrence. For example, a decrease in ectomycorrhizal 

fungal diversity (Pérez-Izquierdo et al., 2020) or alteration of the microbial community structure 

and no effect on microbial biomass have been described as a consequence of changes in the fire 

recurrence (Lombao et al., 2020; Barreiro and Díaz-Raviña, 2021). However, Barreiro and Díaz-

Raviña, (2021) in their review of fire impact on soil microorganisms concluded that fire impact on 

soil microorganisms and the subsequent soil recovery depends on different factors such as the fire 

severity, the soil resilience, and the environmental conditions. They also asserted that the current 

situation of climate change favours more extreme environmental conditions (high fuel availability, 

low humidity, high temperatures, and high wind speed) that shift the fire regimes to more severe 

fires with a large impact on the soil microorganisms. Studies of the impacts of fire on soil microbial 

organisms revealed variable results depending on such factors as fire severity, postfire conditions, 

and time passed after the fire event. For example, some studies showed that the microbial biomass 

in the medium term can increase or decrease depending on the specific environmental conditions 

(Fernández-García et al., 2020). Similarly, Kang and Park (2019) observed a decrease in the 

microbial diversity and amounts three years after a prescribed fire, with an increase in the relative 

amounts of b-proteobacteria and firmicutes and a decrease in acidobacteria. However, other studies 

did not find significant differences in the fungi/bacteria ratio of a permafrost soil at the medium 

term and long term after a wildfire (Zhou et al., 2019). 

Summary and conclusions 

Both wild and prescribed fires occur frequently in many parts of the tropics. These fires 

dramatically affect many of the soil properties including the physical, chemical, and biological 
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attributes of the underlying soil. From the literature reviewed it is obvious that cultural practices 

such as slash and burn method have both beneficial and detrimental effects on soil quality with the 

effects largely dependent upon such factors as fire intensity, duration and recurrence, fuel load, 

and soil characteristics. Fires, depending on severity and duration generally increase soil 

temperatures and higher pH, which in turn affect the nutrient dynamics via the combined processes 

of mineralization and nitrification. During the combustion of soil organic matter some nutrients, 

such as N, P, and S, have low-temperature thresholds and are therefore easily volatilized. Part of 

the nitrogen, that is not completely volatilized, is mineralized to NH4
+ -N to minimize its loss or 

can be further nitrifed to NO3
- -N under favourable conditions. Potassium (K) and phosphorus (P) 

are moderately sensitive, having threshold temperatures of 774°C while magnesium (Mg) and 

calcium (Ca) are relatively insensitive, with high threshold temperatures of 1,107°C, and 1,484°C, 

respectively. As such, these nutrients are not readily volatilized from organic matter combustion 

temperatures. However, some studies suggest that low-intensity fires result in little change or an 

increase in available nutrients (K+, Ca2+, Mg2+, PO4 
3−, NH4 

+) and pH due to ash deposition. It is 

also evident from the present review that soil heating directly affects the soil-borne organisms by 

either killing them directly or altering their habitats.  Microbial groups in particular differ 

significantly in their sensitivity to temperature with the nitrifying bacteria in particular appearing 

to be sensitive to soil heating. The review suggests that the responses of soil microbes to fires 

range from minor detectable effects under low-intensity fires to total sterilization of the surface 

layers of soil under very intense fires. Studies have also shown that the impact of fire soil-dwelling 

organisms particularly soil microorganisms and the subsequent soil recovery depends on several 

factors such as the fire severity, the soil resilience, and the environmental conditions (fuel 

availability, humidity, temperature, etc.). This study posits that uncontrolled use of fire for hunting, 

charcoal production, or land clearing for crop production by most farmers in the tropics and other 

regions of the world has far-reaching implications for sustainable management of ecosystems 

resources in these areas.  

Recommendations: Although little can be done to control SOM loss during wildfires, effort should 

be made to revegetate the site so that organic litter can again be restored on the site as quickly as 

possible; When one plans prescribed fires, care should be taken to avoid bums that consume large 

amounts of surface litter and soil humus; Likewise, the total combustion of large woody debris on 

the soil surface (logs, etc.) during prescribed burning may not be a desirable practice; Repeated 
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use of fire at frequent intervals probably should be avoided on relatively infertile sites where OM 

production is inherently low (for example, as the case with coarse-textured soils found in most 

parts of drier environments); An integrated fire management approach that factors both the severity 

and complexity of the phenomenon is recommended; Further studies on the susceptibility 

resilience of soil bourn organisms to fire events is critical to understanding the microbial response 

to fire and the subsequent implementation of rehabilitation and restoration strategies in the short-

term, medium-term, and long term as opined in several studies (see for example, Barreiro and 

Díaz-Raviña, (2021). 
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Table 1: Summary of results from the reviewed articles on Soil chemical properties affected by forest fire 

AUTHOR(S) VEGETATION 

TYPE 

LOCATION FIRE 

PROPERTIES 

SOIL TYPE SOIL PROPERTY IMPACT REASONS FOR 

IMPACT 

INBAR ET 

AL. (2014) 

Pinus halepensis 

and Pinus brutia 

forest 

Northern 

Israel 

Low-moderate 

severity, WP 

Sandy clay loam, 

Lithic 

Xerorthenth 

Organic matter (OM) Increased Mixing of 

incomplete burnt 

biomass in the soil 

exposed to direct fire 

increased its OM 

content 

CEC Increased Due to the increased 

OM content 

pH Insignificant  - 

EC Insignificant  - 

MUQADDAS 

ET AL. 

(2015) 

Wet sclerophyll 

forest 

Queensland, 

Australia      

Low intensity, 

2 year burning 

regime, heat 

release rate of 

< 2500 KW 

m−1, PF 

Sandy, red to 

yellow 

Kandosols 

 

 

Total N 

Total C 

Decreased 

Decreased 

Due to N volatilization 

Due to CO2 emission 

following burning of 

biomass 

pH Increased Due to increased base 

cations 

Recalcitrant C, N Decreased Reduction of total C 

and N due to 

continuous burning 

 

FRANCOS 

ET AL. 

(2019) 

Pinus 

halepensis and 

Northeast 

Spain 

Temperature of 

65 °C on soil 

surface, maxi- 

Xerorthents Total N Decreased N loss due to 

volatilization and 

uptake by surviving 
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Quercus ilex 

forest 

 

mum fire 

temperature of 

435 °C, PF 

shrubs and herbaceous 

plants 

 

Soil organic matter 

(SOM) 

None - 

pH Increased Heating caused denatur 

ing of organic acid 

EC Increased Release of soluble 

inorganic ions and 

creation of black C after 

fire 

Extractable Ca Increased Higher base cations 

Extractable Mg Increased Increased base cations  

Extractable K Increased Increased base 

cations as a result of 

increased ash 

content 

 

Available P None - 

  

Table 1: Summary of results from the reviewed articles on Soil chemical properties affected by forest fire (Continued) 

AUTHOR(S) VEGETATION 

TYPE 

LOCATION FIRE 

PROPERTIES 

SOIL TYPE SOIL 

PROPERTY 

IMPACT REASONS FOR 

IMPACT 

LIU ET AL. 

(2018) 

Grassland 

vegetation 

Ningxia Hui 

Autono mous 

Region, China 

Surface head fire, 

low intensity fire, 

WF 

Calci-Orthic 

Aridisol 

Soil organic 

carbon (SOC) 

Increased Increased 

pyrogenic C 

resulting from 
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incomplete 

combustion 

Total N Increased Mixing of 

incomplete 

residual burnt 

material with soil 

NO3 − Decreased Rapid 

revegetation with 

increased organic 

N uptake (NO3
-)  

NH + Increased 
Higher ash 

deposition 

coupled with 

increased N 

mineralization as 

conditioned by 

temperature, pH 

and microbial 

activities 

Total P None - 

Extractable P Increased Mineralization of 

organic P to 

inorganic P 

Available K Insignificant - 

pH (IAB) Insignificant - 
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ALCAÑIZ ET 

AL. (2016)

  

Pinus halepensis 

forest 

Montgrí 

Massif, 

Catalonia, 

Spain 

 

Flame height < 

2.5 m, 324 °C, 

PF 

 

Lithic 

Xerorthent 

EC (IAB) Increased Release of 

soluble in-or 

ganic ions 

following 

burning 

Total C (IAB) Increased Formation of 

black C as a result 

of low fire (< 450 

°C) and addi- tion 

of ash content to 

the soil 

Total N (IAB) Increased - 

Available P 

(IAB) 

Increased Addition of ash 

into the soil, 

transformation of 

organic P to 

inorganic P, and 

burning of 

vegetation 

Extractable 

cations (IAB) 

Increased Low fire severity, 

and addition of 

ash and its 

subsequent 

mixing in the soil 

 

Table 1: Summary of results from the reviewed articles on Soil chemical properties affected by forest fire (Continued) 
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AUTHOR(S) VEGETATION 

TYPE 

LOCATION FIRE 

PROPERTIES 

SOIL TYPE SOIL 

PROPERTY 

IMPACT REASONS FOR 

IMPACT 

BADÍA ET AL. 

(2014) 

Aleppo pine 

(Pinus 

halepensis) 

forests 

Montes de 

Zuera, Northeast 

Spain 

Moderate to high 

or high burn 

severity 

Rendzic 

Phaeozem  

SOC Decreased Soil losses 

resulting from 

severe burning 

pH None - 

EC Increased Addition of basic 

cations 

NO3
- Increased Organic N 

transformation 

NH4
+ Increased Mineralization of 

organic N to 

mineral N 

CEC Increased Due to the 

increased OM 

content and 

inorganic ions 

Available P Increased Mineralization of 

organic P and 

dissolution of P 

from ashbeds 

DZWONKO ET 

AL. (2015)

  

Scots pine moist 

forest 

Southern Poland High severity, 

WF 

Sapri-Dystric 

Histosol 

Total N Decreased Losses through 

volatilization 

pH Increased - 

S Decreased - 

OM Decreased Complete 

oxidation and 
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volatilization of 

minor 

compounds 

Base cations Increased Burning of 

organic matter 

MERIA-

CASTRO ET 

AL. (2015) 

Pinus pinaster  

vegeta tion 

Northern 

Portugal 

Fire spread 10–

15 m h−1, PF 

Umbric 

Leptosol and 

Umbric 

Cambisol 

pH None - 

SOM None - 

GOBERNA ET 

AL. (2012) 

Shrubland 

(Rosmarinus 

officinalis) 

vegetation 

Valencia, Spain Fire temp. of 

611 °C, soil 

surface temp. of 

338 °C, PF 

Humic 

Leptosols 

pH None - 

Total OC None - 

NO3
- Increased Increased 

nitrification 

NH4
+ Increased Mineralization of 

organic N 

Available P Increased Mineralization of 

organic P 

BENNETT ET 

AL. (2014) 

Eucalyptus forest Victoria, 

Australia 

High intensity, 

259 kW m−1, PF 

Kandosols and 

Der- mosols 

Carbon stocks decreased Combustion of 

organic matter 

 

 

Table 1: Summary of results from the reviewed articles on Soil chemical properties affected by forest fire (Continued) 

AUTHOR(S) VEGETATION 

TYPE 

LOCATION FIRE 

PROPERTIES 

SOIL TYPE SOIL 

PROPERTY 

IMPACT REASONS FOR 

IMPACT 

Istanbul, Turkey Total N None - 
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AKBURAK ET 

AL. (2018) 

Quercus frainetto 

forest 

Low intensity, 

burning for 20 

min (857.95 g 

m−1 of biomass), 

PF 

Loamy clay, 

Luvisol 

SOC None - 

pH increased Due to increased 

base cations 

EC None - 

Base cations increased Increased OM 

and inorganic 

ions 

HOSSEINI ET 

AL. (2017) 

Pinus pinaster 

forest 

North-central 

Portugal 

Moderate severity 

fire, WF 

Humic 

Cambisols and 

Epileptic 

Umbrisols 

N increased Not discussed 

P increased Addition of ash 

and higher clay 

content which 

increase P 

sorption in soils 

DOWNING ET 

AL. (2017) 

Alpine moorlands Mount Kenya, 

Kenya 

High intensity, 

WF 

Dystric 

Histosols and 

partly humic 

Andosols 

CEC increased Addition of ash 

and inorganic 

ions 

     OC None - 

     pH None - 

     OM None - 

VALKÓ ET AL. 

(2016) 

Grassland East Hungary PF Gleyic Solonetz OM None - 

pH None Less combustion 

leading to small 

ash availability 

Available K None - 

HEYDARI ET 

AL. (2017) 

Ilam, Iran Mixed intensity, 

WF 

- OC (high 

intensity) 

Decreased Not discussed 

file:///C:/Users/PC/Desktop/New%20folder/BUSH%20FIRE%20FOLDER/Table%202%20Chemical%20Properties.docx%23_bookmark12
file:///C:/Users/PC/Desktop/New%20folder/BUSH%20FIRE%20FOLDER/Table%202%20Chemical%20Properties.docx%23_bookmark63
file:///C:/Users/PC/Desktop/New%20folder/BUSH%20FIRE%20FOLDER/Table%202%20Chemical%20Properties.docx%23_bookmark37
file:///C:/Users/PC/Desktop/New%20folder/BUSH%20FIRE%20FOLDER/Table%202%20Chemical%20Properties.docx%23_bookmark131
file:///C:/Users/PC/Desktop/New%20folder/BUSH%20FIRE%20FOLDER/Table%202%20Chemical%20Properties.docx%23_bookmark59


41 
 

Oak (Quercus 

brantii) forest 

 

EC (low 

intensity) 

None - 

pH (high 

intensity) 

increased  Release large 

quantities of 

basic cations 

after burning 

NO − (moderate 

intensity) 

increased Release of NO – 

N into the soil as 

leaf litter 

decomposition or 

burning 

CEC (high 

intensity) 

increased Reduced 

thickness of the 

soil organic layer 

after burning and 

subsequent 

addition of ash to 

the mineral layer 

 

Table 1: Summary of results from the reviewed articles on Soil chemical properties affected by forest fire (Continued) 

AUTHOR(S) VEGETATION 

TYPE 

LOCATION FIRE 

PROPERTIES 

SOIL TYPE SOIL 

PROPERTY 

IMPACT REASONS FOR 

IMPACT 

SCHARENBROCH 

ET AL. (2012) 

Oak forest Illinois, USA Low intensity, 

120–230 °C, PF 

Alfisols and 

Mollisols 

Available P None - 

Total C Increased Less heat to 

oxidize OM 
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Total N Increased Considerable 

amount of 

organic N can 

with stand low-

grade fire 

FERNÁNDEZ-

GARCÍA ET AL. 

(2019A, B) 

 

Pinus pinaster 

forest 

Spain High burn 

severity, WF 

Haplic 

Umbrisol, 

Dystric Regosol 

Available P Increased transforms 

organic P into 

orthophosphate 

pH None Removal of ash 

by erosion 

EC None leaching or 

transported by 

runoff 

OC None - 

Total N None - 

MOYA ET AL. 

(2019) 

Pinus halepensis 

forest     

Spain Moderate-high 

intensity, WF 

Aridisols (Lithic 

Haplocalcids) 

OC Decreased -- 

N None - 

Available P Increased Combustion of 

the organic part 

of fuel load and 

the deposition of 

ashes 

pH None - 

CEC Increased Increase in 

exchangeable 

cations from ash 
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FERNÁNDEZ-

FERNÁNDEZ ET 

AL. (2015) 

FULTZ ET AL. 

(2016) 

Pinus pinaster 

forest 

Grassland 

Northwest 

Spain 

Texas, USA 

PF 

Low-moderate, 

PF 

- 

Acuff and 

Amarillo 

pH None - 

NO3 –N Decreased Decrease net 

nitrification 

following fire 

CEC None - 

NH4 +–N Increased - 

NO3  –N None Low nitrification 

due to low 

moisture 

CERTINI ET AL. 

(2011) 

Pinus pinaster 

forests 

Calambrone, 

Italy 

Highly to very 

highly 

severe.WF 

Endogleyic 

Arenosols 

pH Increased Incorporation of 

ash 

   

C Increased Due to charred 

litter and biomass 

incorporation 

C/N ratio Decreased Nitrogen is 

preferentially 

immobilised 

during charring 

 

Table 1: Summary of results from the reviewed articles on Soil chemical properties affected by forest fire (Continued) 

Author(s) Vegetation type Location Fire properties Soil type Soil property Impact Reasons for 

impact 

pH None - 
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Certini et al. 

(2011) 

 

Pinus pinea 

forests 

 

Migliarino, Italy 

 

Highly to very 

highly severe 

WF 

Endogleyic 

Arenosols 

 

C Increased Due to charred 

litter and biomass 

incorporation 

N Decreased Nitrogen is 

preferentially 

immobilised 

during charring 

Switzer et al. 

(2012) 

Douglas-fir 

forest 

British Columbia 

Canada 

40–853 °C, PF 

 

Orthic Eutric 

Brunisol 

 

Total C None - 

Base cations 

 

Increased Increased 

inorganic ions 

following 

combustion of 

partially 

burned 

vegetation 

Source: Agbeshie et al., (2022). WF, PF and IAB indicates wildfire, prescribed fire, and immediately after burning, respectively.
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Table 2:  The mean soil quality parameters for burnt and un-burnt land at different soil depths in the study area 

 

SOIL INDICATORS UN-BURNT 

PLOT 

BURNT PLOT UN-BURNT 

PLOT 

BURNT PLOT 

0-15 cm 15.30 cm 0-15 cm 15.30 cm 

SOIL PH (H2O) 5.58 7.2200 5.1200 6.3500 

SOIL PH (HCL) 4.8633 6.50 4.246 5.8900 

SAND (G KG-1) 73.01 67.2 62.5333 64.5333 

SILT (G KG-1) 8.0333 6.6667 8.000 6.0000 

CLAY (G KG-1) 18.1333 26.1 29.4667 29.4667 

SOIL ORGANIC CARBON 

(SOC) (G KG-1) 

2.3100 2.73 1.5567 1.9633 

SOIL ORGANIC MATTER 

(SOM) (G KG-1)  

3.9933 4.7267 29.4667 3.5367 

TOTAL NITROGEN (TN)  (G 

KG-1) 

0.1967 0.666 0.1300 0.7200 

AVAILABLE PHOSPHORUS 

(AVAIL. P) (MG KG-1) 

2.5400 3.45 29.4667 1.4 

CALCIUM (CA) (CMOL KG-1) 2.5333 2.6667 2.533 2.2667 

MAGNESIUM (MG) (CMOL 

KG-1) 

1.6000 1.966 1.4667 1.7667 

POTASSIUM (K) (CMOL KG-

1) 

1.8567 0.593 0.1333 0.600 

SODIUM (NA) (CMOL KG-1) 0.1300 0.1567 0.1633 0.2033 

EXCHANGEABLE CATION 

(EC) (CMOL KG-1)  

5.0200 5.38 5.16333 4.8637 

BASE SATURATION (BS) (%) 82.5667 82.20 52.1633 82.8000 

Source: Ubuoh et al. (2017) 

Table 3: Mean concentration of metals in burnt and unburnt soils at Eagle Island, Niger Delta, Nigeria 

SOIL TYPE METALS (MG/KG) 

Ca Fe Mg NO3
- PO43- K 

BURNT 241.69 ± 

55.96 

10743.75 ± 

15.39 

650.18 ± 

145.74 

85.06 ± 22.63 284.75 ± 

42.73 

171.54 ± 

27.40 

UNBURNT 234.22 ± 

86.02 

8854.02 ± 

1734.86 

497.12 ± 

116.22 

60.93 ± 10.35 193.38 ± 

50.49 

135.95 ± 

14.80 
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Source: Numbere and Obanye, (2023).
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CLIMATE CHANGE, FOOD SECURITY, NATIONAL SECURITY and ENVIRONMENTAL 

RESOURCES  (GLOBAL ISSUES & LOCAL PERSPECTIVES) 

 

Table 4a: Summary of results from the reviewed articles concerning the fire effects on soil biological 

properties of samples taken mainly in the 0–5 cm of the A horizon top layer (part 1). 

FIRE 

TYPE/ECOSYSTEM/CLIMATE 

TIME 

AFTER 

FIRE 

MICROBIAL 

PARAMETER 

CHANGE 

(RESPECT TO 

UNBURNED) 

REFERENC

E 

WILDFIRES 

FOREST/MEDITERRANEAN 

CLIMATE 

3 

days/10 

months 

Enzyme activities: 

Acid and alkaline 

phosphatases, 

arylsulfatase, beta- 

glucosidase, and 

leucine- 

aminopeptidase 

Decrease, recover 

after 10 months 

 

Borgogni et 

al., 2019 

 

Bacterial and fungal 

communities 

(DNA) 

Decrease, recover 

after 10 months 

Microbial biomass None 

PEATLAND/EQUATORIAL 

CLIMATE 

14/28 

days 

Soil respiration Decrease Was

is et 

al., 

201

9 

Viable cells (plate 

counting) 

Decrease 

CONIFER 

CATCHMENT/ALPINE 

CLIMATE 

18 days Enzyme activities:  Fairbanks et 

al., 2020 a-glucosidase, b-

xylosidase, leucine- 

aminopeptidase, acid 

phosphatase 

None 

b-1,4-glucosidase, 

b–D- 

cellobiohydrolase, b-

1,4,N- 

acetylglucosaminid

ase 

Decrease 
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PINE 

FOREST/MEDITERRANEAN 

CLIMATE 

 

1 

month/1

–3 years 

Viable bacteria and 

fungi (plate 

counting) 

Increase Rodriguez et 

al., 2018 

Bacterial diversity 

(DNA) 

Decrease (recovery 

1 year) 

Soil respiration 

(SIR) 

Increase 

Enzyme activities: 

glucosidase, 

cellulase, invertase, 

urease, b-N- 

acetylglucosaminida

se, acid and alkaline 

phosphatases 

None/increase 

(phosphatase) 

FOREST AND SHRUBS/ 

MEDITERRANEAN AND 

TEMPERATE CLIMATE 

2 

months 

Richness and 

diversity of 

bacterial 

communities 

(DNA) 

Decrease Sáenz et 

al., 2020 

 

WETLAND/SUBTROPICAL 

WET CLIMATE 

2 

months 

Microbial biomass 

(PLFA) 

Increase (decrease 

in Fungi) 

Zhang et al., 

2019 

Microbial C 

utilization (CLPP) 

Incre

a

s

e 

FOREST/TEMPERATE 

MONSOON CLIMATE 

 

6 

months 

Bacterial and fungal 

richness, diversity 

(DNA) 

Decrease (fungi 

more sensitive) 

Qin and 

Liu, 2021 

 

FOREST/TEMPERATE 

OCEANIC CLIMATE 

 

1 year Bacterial and fungal 

communities 

(DNA) 

Change in 

structure, bigger 

impact in bacteria 

than in fungi 

Brown et 

al., 2019 

 

FOREST/BOREAL CLIMATE  1 year Fungal richness and 

diversity (DNA) 

Decrease Day et al., 

2019] 
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WETLAND/SEMIARID 

CLIMATE 

1/2 

years 

Enzyme activities: 

invertase, urease, 

catalase 

Decrease Semenenko et 

al., 2020 

OAK-PINE FOREST/HUMID 

SUBTROPICAL CLIMATE 

 

1/14 

years 

Enzyme activities: 

cellobiohydrolase, 

b- glucosidase, 

leucine 

aminopeptidase, 

phenol oxidase, 

peroxidase, urease 

None/decrease 

(urease)/ increase 

phenol oxidase 

Huffman and 

Madritch, 

2018 

 

Soil respiration Decrease (1 year) 

 

Bacterial and fungal 

diversity (DNA) 

Decrease 

PINE FOREST/SEMIARID 

CLIMATE 

2 years Soil respiration Decrease Allam et 

al., 2020 Microbial biomass 

(SIR) 

Decrease 

PINE FOREST/SEMIARID 

CLIMATE 

3 years Viable bacteria and 

fungi (plate 

counting) 

Decrease in bacteria Olejniczak et 

al., 2019 

FOREST/BOREAL CLIMATE 3 years Fungi/bacteria 

(DNA) 

None Zhou et al., 

2019 

Microbial biomass 

(fumigation) 

None 

Microbial C, N, P Decrease 

Enzyme activities:  Fernández-

García et al., 

2020  

b-glucosidase, 

urease 

Increase/decrease 

(site specific)  

Acid-phosphatase Increase 

Microbial biomass 

C 

Increase/decrease 

(site specific) 

FOREST/BOREAL CLIMATE 50 years Microbial biomass 

(PLFA) 

None Cavard et al., 

2019  
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Table 4b: Summary of results from the reviewed articles (part 2)  

FIRE 

TYPE/ECOSYSTEM/CLIMATE 

TIME 

AFTER 

FIRE 

MICROBIAL 

PARAMETER 

CHANGE 

(RESPECT TO 

UNBURNED) 

REFERENCE 

PRESCRIBED FIRES 

SHRUBLAND/MOUNTAIN 

CLIMATE 

1 day/1 

–5 years 

Microbial biomass C Decrease 

(recovery after 5 

years) 

Armas-Herrera 

et al., 2018) 

Enzyme 

activities (b-

D-

glucosidase, 

acid 

phosphatase), 

soil 

respiration 

Decrease 

FOREST/MEDITERRANEAN 

CLIMATE PINUS  

2/6 

months 

C-substrate 

utilization 

Increase Moya et al., 

2020 

PLANTATION/SUBTROPICAL 

CLIMATE 

1 year Bacterial fungal 

diversity 

None Wang et al., 

2019; 2020 

Bacterial–

fungal 

relative 

abundance 

Shift 

Microbial biomass 

C  

Decrease 

LARCH FOREST/BOREAL 

CLIMATE 

3 years Microbial diversity 

and richness 

Decrease Kang and Park, 

2019 

SHRUBLAND/MEDITERRANEAN 

CLIMATE 

4 years Fungal community 

composition 

Decrease 

mycorrhizal 

fungi 

Castaño et al., 

2020 

SHRUBLAND/TEMPERATE 

CLIMATE 

4 years Microbial biomass 

(PLFA) 

Decrease Díaz-Raviña et 

al., 2018 

Enzyme activities (b-

glucosidase) 

None 
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Enzyme activities 

(urease) 

Decrease 

Microbial biomass 

C 

Decrease 

Soil respiration Decrease 

Bacterial growth None 

PINE FOREST/SEMIARID 

CLIMATE 

CONTROLLED 

EXPERIMENTS 

15 

years 

Ectomycorrhizal 

fungi 

None Hart et al., 2018 

ARABLE LAND/HUMID 

CONTINENTAL CLIMATE 

(LABORATORY HEATING, 

DEGREE-HOUR METHOD)  

1 day Enzyme activities: 

catalase, 

dehydrogenase 

 

Decrease Kazeev et al., 

2020  

Microbial biomass Decrease 

Viable N fixing 

bacteria 

Decrease 

PINE FOREST/TEMPERATE 

CLIMATE (LABORATORY 

HEATING UNDER DIFFERENT 

SOIL WATER CONTENT, 

DEGREE-HOUR METHOD)  

1 day/1 

month 

Microbial biomass Decrease Barreiro et al., 

2020  Bacterial activity Decrease 

SHRUBLAND/TEMPERATE 

CLIMATE (LABORATORY 

HEATING, SEVERITY AND 

RECURRENCE, DEGREE-HOUR 

METHOD) 

1 day/2 

months 

Microbial C 

utilization (CLPP) 

None/increase 

(soil specific) 

Lombao et al., 

2020] 

Microbial biomass 

(PLFA) 

Decrease 

Microbial 

community structure 

(PLFA) 

Shift 

PINE 

FOREST/MEDITERRANEAN 

CLIMATE (HEATING OF SOIL 

MONOLITHS)  

7 days Microbial biomass None Lucas-Borja et 

al., 2019  Bacterial 

composition 

Modified 

PINE FOREST/BOREAL 

CLIMATE (GREENHOUSE) 

1 year Fungal 

communities 

None Beck et al., 

2020 
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associated to pines 

POSTFIRE MANAGEMENT      

FOREST/TEMPERATE 

CLIMATE (MULCH MATERIAL 

AMENDMENT) 

2 

months 

Bacterial activity Increase 

(straw)/decrease 

(initial with 

eucalyptus) 

Barreiro et al., 

2016 

Fungal activity, soil 

respiration 

Increase/none 

(coconut fiber) 

Microbial biomass Increase (fungi) 

FOREST/MEDITERRANEAN 

CLIMATE (LOGGING) 

6 

months 

N cycling bacteria 

abundance 

Decrease Pereg et al., 

2018  

GRASSLAND/CONTINENTAL 

CLIMATE (FERTILIZER 

APPLICATION AFTER YEARLY 

PRESCRIBED FIRE) 

1 year Bacterial and fungal 

biomass 

None Carson and 

Zeglin, 2018  

Bacterial 

community 

Composition 

Decrease/increase 

(specific phyla) 

PLFA: Phospholipid fatty acids; CLPP: Community Level Physiological Profiling; SIR: Substrate Induce 

Respiration 

Source: Barreiro and Díaz-Raviña, (2021). 

 


